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INTRODUCTION

Recently, S. Karlin [6] announced some fundamental results about perfect
spline functions and their extremal properties and related results concerning
the estimation of best constants. One of these results concerns the minimiza
tion problem

II sIn) II L''''<o,l) = min{llf(ll) II L""(O,l):jE UC W",a:(O, l)} (1)

where the flat U in the Sobolev space Wn,oo(O, 1), 11 ?: 1, is defined by pres
cribed interpolation of values r 1 , ... , rn+k on a mesh 0 = Xl ~ ... ~ Xn+k = 1
which permits at most n coincident values of the mesh points. Interpolation
of derivatives through order v - 1 is understood at a mesh point of multi
plicity v. A basic result announced by Karlin is that the minimization problem
(1) admits a perfect spline solution of the form

(2)

where C, ao ,... , an - 1 are real constants and 0 < gl < g2 < '" < gk-1 < 1 are
the knots of s.

We shall show in this paper that perfect spline solutions can be obtained
for a strictly wider class of constrained minimization problems than those
considered by Karlin. Our result admits certain Hermite-Birkhoff inter
polation constraints, viz., those that are locally poised in a sense to be made
precise later. The result is expressed in Theorem 3 of Section 1. The advantage
of our methods is their simplicity. Although the analysis is lengthy and
delicate, it is accessible via the calculus. The techniques make fundamental
use of the existence, demonstrated in [4], ofpiecewise perfect spline solutions
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PERFECT SPLINES 79

to constrained L w minimization problems as well as the existence of a
fundamental core interval of uniqueness. These results, which were obtained
by basic convexity and functional analysis techniques, are reviewed as
Theorems I and 2 in Section 1. We state them in somewhat more general
form than is actually needed.

Our result does not exactly reduce to Karlin"s in the case of interpolation
of successive derivatives at nodes. Specifically, Karlin has a precise global
estimate of k - 1 for the maximum number of knots on (0, I), i.e., 11 + 1 less
than the number of interpolation constraints. In contrast to the global
approach taken by Karlin, ours is essentially a local one. We show that
between any two distinct nodes Xi and Xi+! our perfect spline solution has 2.r
most n knots (n - 1 if on the core interval of uniqueness). Our method of
proofis also local. We show that there exists an arbitrarily smail perturbation
of the data such that the uniquely determined solution of the perturbed
problem on the core interval can be extended to a perfect spline solution of
the perturbed problem. We then establish appropriate convergence as the
perturbations tend to zero.

We close the introduction with a brief historical account of related results.
The emergence of perfect splines as extremals of L w variational problems
seems to date from the Achieser-Favard-Krein theorem [1, 2] on the best £"0
approximation of periodic functions by trigonometric polynomials.
Favard [3] later asserted the importance of perfect spline solutions for the
problem (1). Glaeser [5] gave the first concrete solution of (1) in the special
case of two nodes, each of multiplicity n. He demonstrated the existence of a
unique perfect spline solution with at most iT - 1 interior knots.
Louboutin [7] displayed a closed form solution of the problem considered by
Glaeser under very special choices of the interpolation. We refer the reader
to the informative related paper of Schoenberg [8] for an account of this and
related results. Smith [9], in his dissertation, proved the existence of a
piecewise perfect spline solution of problem (1) with simple nodes. Finally, [4]
established the existence of a fundamental core interval of uniqueness and
considerably extended the range of applicable extremal problems.

1. PIECEWISE-PERFECT AND PERFECT SPLINE SOLUTIONS

Let 111 points Xl < X 2 < ... < X m be specified in ~ together with a positive
integer n. Associated with each of these points Xi, we consider the linear
functionals L ij defined by

640 [12[r-6

11-1

L· = " a(~)DV(')(x,)
<J l.J 't) 't '

V~O

j = 1,... , k i , i = 1, ... ,m,
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for prescribed real numbers alJl such that, for each i, the k i n-tuples
(a~~l, ..., a;i-l

) are linearly independent. Here I :0:;; k i :;( n for i = 1,... , m, and
the L ii are taken to operate on the real Sobolev class

Wn,OO(Xl , x m) = {f E Cn-l[Xl , xm] : /(n-l) is absolutely

continuous, /(n) E L OO(xl , x m)).

Let L be a nonsingular linear differential operator on [Xl' Xm ] of order n of
the form

n-l

L = Dn + I CiDi,
i~O

where Cj E C[a, b],j = 0, 1,... , n - 1. We consider the constrained minimiza
tion problem over Wn.oo(xl , x m):

[I Ls I!LOO(X1''''m) = ex = inf{lj LfIILoo(X1.Xm) :fE U} (1.1)

U = {f E Wn.oo(xl , x m): Luf = rij, 1 :0:;; j :0:;; k i , 1 :0:;; i :0:;; m}, (1.2)

for prescribed real numbers rij .

THEOREM 1. The minimizationproblem (1.1) has a solution s E Wn,OO(xl , xm )

and the class S(U) ofall such solutions sfor afixed choice of U is a convex set.
Let Sl(U) = S(U) and, for 2 :0:;; i :0:;; m, let SlU) consist of all solutions to the
minimization problem

Then each SlU) is nonempty; in particular, there is an S* in

m

Sm(U) = nSlU).
i=l

In order to obtain the existence of piecewise perfect spline solutions to (1.1)
as well as the existence of a core interval of uniqueness we must make addi
tional assumptions regarding the differential operator L and the linear
functionals Lij . Regarding L we assume further:

(I) Cj E Ci[a, b]; the null space of the formal adjoint L* of L given by

n-l

L*f= (-l)nDnf+ I (-I)iDi(cJ)
i~O
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is spanned by a Tchebycheff system, i.e., if u E Cn[xl , x",] satisfies L *u = 0
on [Xl' X m ] and if u(YI) = ... = u(Yn) = 0 for any set of n points

then u = °on [Xl' xmJ.
In order to state conveniently our hypothesis on the Lij we define the

integer no to be the maximum positive integer satisfying the following
property: for any no consecutive points among Xl"'" x m the sum of the
integers k; associated with these points does not exceed n. Clearly, we have
1 :::;; no :::;; n. Then our assumption about the L;j is as follows:

(II) (a) For every no consecutive points x Ao '"0' xAo-i-no-l and prescribed
values Yi} there is a function u in the null space of L satisfying Lijll = J'ij ,

j = 1,..., k i , i = Ao ,... , Ao + no - 1.

(b) For every no + 1 consecutive points xAo , •.• , x"o"-n
o

such that

"0+ no

L k v ~ n + 1
11="0

the equations

Liju = 0, j = 1,..., k i , i = Ao ,... , Ao + no

for u in the null space of Limply u O.

THEOREM 2. Suppose (I) and (II) are satisfied. Then there is a core interval
J = [XA1 ' X"2+ nOJfor some 1 :::;; Al :::;; "2 :::;; In - no satisfying

,':?;+no

L k i ~ n + 1
i="l

such that any two solutions of (1.1) agree on J. Moreover, if S E S(U) then
I Ls I = ex a,e. on J. lfs* is chosen as in Theorem 1, then s'" is unique in Sm(U).
.ilJoreover, s* satisfies the property that [ Ls* I is equivalent to a step function on
(Xl' X m ) with discontinuities restricted to X 2 , ••• , X m- l and, on (Xi, Xi-i-l),

i = 1,... , In - 1, Ls* is equivalent to a step function with at most n - 1
discontinuities on each such interval.

When L = Dn, Theorem 2 asserts the existence of a piecewise perfect
spline solution s* to (1.1), i.e., s* is a perfect spline on each (Xi' Xi->-l) with
i sIn) i = exi ~ ex and s* possessing at most n knots on [Xi, Xi-elY' i = 1, ... ,
In - 1. The hypothesis (1) is automatically satisfied for the operator L = Dn
and (II) is satisfied, e.g., if the L ij are given by

Lid = Djf(xi)' j = 0, 1, ... , k i - 1, • 1
l = 1,... , In.
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We are now prepared to state our result on the existence of perfect spline
solutions to the extremal problem

where U is given by (1.2).

THEOREM 3. There is a perfect spline solution s to the extremal problem
(1.3), provided the functionals L ij satisfy hypothesis (II). s has the property that
nns = ±ex except at a finite number ofpoints of discontinuity of nns, which
cannot exceed n in number on (Xi, xi+l)for each i = 1, ..., m - 1.

2. PERFECT SPLINE EXTREMALS

In this section we give a proof of Theorem 3. The proof is aided by two
propositions, the first of which is a perturbation result.

DEFINITION. A spline s of degree n on [ex,j3] is said to have k knots
ex < tl < ... < gk < 13 on (ex, 13) and k + I knots ex, tl ,..., tk on [ex, 13) if the
representation

sex) = P(x) + A (x - ex)" + ~ 2Ao (x - tj)~ (2.1)
o n! i7:

1
J n!

holds for s on [ex,j3] for P a polynomial of degree n - I and real numbers
Ao , .•. , Ak • s is a perfect spline if Ao = -AI = A2 = ... = (-I)k Ak =1= o.

PROPOSITION 1. Let (so ,... , S,,-I) and (So ,... , Sn-l) be arbitralY n-tuples of
real numbers. For each € > 0 there is an n-tuple (ro ,... , rn-l) satisfying

I Sv - rv I < €, 0 ~ V ~ n - I,

such that the equality

nvt(1) = rv , 0~v~n-1

fails for every perfect spline t on [0, I] with at most n - I knots on [0, I) for
which nVt(O) = Sv , 0 ~ v ~ n - 1.

Proof Any perfect spline s on [0, 1] with at most n - 1 knots on [0, 1)
such that nvs(O) = Sv, 0 ~ v ~ n - 1, is of the form

A n-2.
sex) = P(x) + ,xn + 2A L (-lr(x - ai)~/n!

n. i~1
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with - 00 < ,\ < (X) and 0 ~ a1 ~ ••. ~ an - 2 < 1 for a fixed P of degree
n - 1. Now let F be the function defined on the set,

with image in !R.n , given by

Feu, ~l , ... , ~n-2)

= \.DVP(l) + fL + 2fL 'r (-1)j(1 - ;j)"'-',/(11 _ v)!! 11-1,I (n - v)! j~l \V~O

The function F is in Coo(D) and hence its image has no interior in !R.". In
particular, there are points, arbitrarily close to any point in lR n , which are not
in the set F(D); specifically, there are points arbitrarily close to {sJ~'~ which
are not in the image of F(D), which proves the proposition.

Our next proposition is the core result in the proof of Theorem 3.

PROPOSITION 2. Let s be a spline ofdegree n on [-1, 1] with Dns = ±>, on
(-1,0) and Dns = ±(3 on (0, 1) where I (3 I ,s;: i Ii. I . Suppose further that
there is not a pelfect spline t on [0, 1] with at most n - 1 knots on [0, 1)
satisfying

Dvt(O) = Dvs(O)

DVt(l) = Dvs(l) for v = 0, ... , n - 1.

Then there is a pelfect spline S on [-1, 1] with S = s on [-1,0] and
S<vl(l) = sV(l) for v = 0, ... , n - 1. Further, S can be chosen so that it has at
most n knots on (0, 1).

Proof Let t be the unique solution of the extremal problem

o < ~ = [I t(l1) [I Loo(O,1)

= inf{11 DnfIILoo(o,ll:fE Wn·",(O, 1), D'f(O) = DVs(O)

and DVf(1) = Dvs(l), 0 ,s;: v ,s;: n - I}. (2,2)

Then ~ ,s;: I (3 [ and there is no loss in assuming I (3 I = 13. By Theorem 2, t is
a perfect spline with at most n - 1 knots on (0, 1). Let t be the function in
Wn.oo(-1, 1) which agrees with son [-1,0] and with t on [0, 1]. We choose
the sign of ,\ so that !(nl = ,\ holds near and to the left of zero. Then, for
o ~ x ,s;: 1, by the hypotheses of the proposition,

(3''\ n-l "'(3'
{(x) = p(x) + --T- x" + L (-l)j~ (x - b1)~

n. j=1 fl.
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where 0 < hI < ... < hn- l < 1, p is a polynomial of degree 11 satisfying

IPIV)(O) = Slv)(O),
pln)(O) = ,\

and fJ' = ±fJ. If I fJ I = I ,\ I then t provides an appropriate extension.
Hence, suppose 0 < I fJ I < 1'\ I . We wish to find numbers

o< CI < .. , < Cn < 1
satisfying

n n-l
2'\ L (-I)j(l - Cj)n-v = fJ' - ,\ + 2fJ' L (-I)j(l - hj)n-v,

j=l j~l

o~ v :'( 11 - 1, (2.3 i)

if fJ'1,\ is positive and similar numbers satisfying

n n-l

-2'\ I (-I)j(l - Cj)t<-v = fJ' +,\ + 2fJ' I (-I)i(l - hj)n-v,
j~l i~l

o:'( v :'( 11 - 1 (2.3 ii)

if fJ'I'\ is negative. Indeed, Eq. (2.3 i) express the interpolation conditions

o :'( v :'( 11 - I,

for the perfect spline

s*(x) = p(x) + 2'\ I (-IY (x -,Cj)~
i=l 11.

on [0, IJ whereas Eqs. (2.3 ii) express the conditions

(2.4 i)

o~ v :'( 11 - 1,

for the perfect spline

n n ( t
S*(x) = p(x) - 2'\ Xl - 2'\ L (-1)j X -,

Cj
+

11. j=l 11.
(2.4 ii)

on [0, IJ. We show that (2.3 i) and (2.3 ii) can be reduced to the same system.
Divide (2.3 i) by -2'\ and (2.3 ii) by 2'\, set Xj = 1 - Cj ,j = 1,...,11 and set
B j = 1 - hj , 1 ~ j :'( 11 - 1. Then both systems reduce to the system, in
the unknowns 1 > Xl > .. , > X n > 0,

on n-l

I (_1)i+l x/" = -w - p) + p L (-I)i+lB/",
j=l j~l

1 :'( k :'( 11, (2.5)

where p is a fixed number, 0 < p < 1, and 1 > BI > ... > Bn- l > O.
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Now let

D = {x = (Xl"'" X n ) : 1 > Xl > '" > x" > O}

and let F: [j --->- ~n be defined by

\
n \ n

F( 0)- "(-l)j+lx. k (
Xl"·" X n - L~ ., \k~l •

85

(2.6)

Note that FE Coo(D) and that F is a local homeomorphism on D since its
Jacobian matrix is nonsingular in D. Now let L be the line segment in \Rn
joining the points B = F(BI , B2 , ••• , B n - 1 , 0) and A = (1/2, ... , 1/2). We shall
show that L C F(D); specifically we shall show that the interior of L lies in the
interior of F(D), which is just F(D). This will yield a solution to (2.5) and
hence a proof of the proposition via (2.3) and (2.4). Now our hypothesis
that there is no perfect spline with fewer than n knots with the desired deriva
tives at 0 and 1 together with the properties of F, imply that, if L meets the
boundary of F(D) at a point 0, then either 0 = F(l, X 2 , ... , x n) where
1 > X 2 > ... > X n > 0 or 0 = F(xi , ... , X n - 1 , 0) where

1 > Xl > ... > X n- 1 > O.

Let Mo = {(Xl"'" Xn-l' 0) : 1 > Xl > ... > X n- 1 > OJ, let

M1 = {(l, X 2 , ... , x n) : 1 > X 2 > ... > X" > O}

and let No and N I be the images under F of kIo and M1 , respectively. We
now show by convexity arguments that L begins in F(D) at B and cannot
emerge from F(D) until A, if at all. Specifically, we show that, if 0 is a point
of No or N I and H is the tangent hyperplane to No (respectively, N I ) at 0,
then there is a neighborhood of 0 in which F(D) U No U N I lies strictly
on one side of H. Then we show that, if L meets No or N1 at a point 0, the
line segment L', joining 0 to A, lies strictly on the same side of H as F(D). It
follows that L cannot be outside ofF(D) except at A or B.

We prove the two assertions for 0 E No in detail, sketching the modifica-
tions for 0 E N I • Let 0 = F(fl , , fn-l' 0) E No. Then the tangent vectors
to the surface No at 0 are (1, 2~j , , nf7-1

) for j = 1,... , n - 1 and hence a
normal vector (Zl ,... , zn) to No at 0 must satisfy

j = 1'00" n - 1.

Thus, for 1 :(; k :(; n, Zk can be taken to be the coefficient of x" in the poly
nomial Q of degree n which is determined by the conditions Q(O) = 0 and

n-I

Q'(x) = IT (x - gj).
j=l
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Now let 0' be any point of F(D) U No U N1 which is sufficiently close to
o with 0' 01= O. Then,

where, by the open mapping theorem applied to a domain of definition of F
containing D U M o U No, Xi is close to ti' i = 1,... ,11 - 1, and X n ~ 0
with X n close to O. The inner product of the normal to No at 0 with 0 - 0' is

n-l n n n

= I (-I)i+1 I zill - I (-l)i+l I zkxl
j~l k=l j=l k=l

n-1 n
= I (-I)H1 Q(tj) - I (_1)i+1 Q(Xj)

j~l j=l

n-1
= I (-I)i+l[Q(tj) - Q(Xj)] + (_l)n Q(xn)·

j~l

Now Q attains a local minimum at t1 and alternate maxima and minima at
t2 ,..., tn-I· It is thus a simple matter to check that the terms

(_1)i+1 [Q(tj) - Q(Xj)], 1 ~j ~ n - 1,

are nonpositive provided only that Xj is near tj, 1 ~ j ~ n - 1,
i.e., t2 ~ Xl < 1, t3 ~ X2~ t1 ,..., 0 < X n- 1 ~ tn-2. From prior state
ments, we can select a neighborhood of 0 to ensure this. Furthermore,
(_l)n Q(xn) is also always nonpositive when X n is near zero, i.e.,
o~ Xn ~ tn-I' since Q(O) = O. Since 0 01= 0', some term is not zero and
hence the points of F(D) U No U N 1 which are near 0 lie strictly on one side
ofH.

If 0 = F(l, t2 ,..., gn) E N1 then Qis defined by

Q(O) = 0,
n

Q'(x) = n (x - tj)
j~2

and Qachieves a local minimum at g2 and alternate maxima and minima. The
inner product in this case is

n

[Q(I) - Q(xJ] + I (-I)i+1[Q(tj) - Q(Xj)]
j=2
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o :s;; r ,s;; 1.

which is nonnegative if t2 ,s;; Xl ,s;; 1';3 ,s;; X2 < 1, ... ,0 < Xn ,s;; tn-I' Thus,
if 0' =1= 0 is sufficiently dose to 0 in F(D) U No U N l , then the inner product
is strictly positive.

For the second assertion, suppose that (;1"'" gn-l, 0) E: lifo and
F(tl ,..., t n-l , 0) = 0 E L. Each point R of L' is of the form

R = lio - r) + r II (-I)Hl uf' '
\ j~l k~l

Hence the inner product of the normal to No at 0 with 0 - R is

We claim that the term

n-l
L (-l)j~l Q(tj) - tQ(1)
j=l

is negative. Note that "L,;'::: (-l)i+l Q(tj) is negative and hence the claim
surely holds if Q(l) ;;?: O. On the other hand, because Q'(x) > 0 for tl < x < 1
we have Q(1) > Q(tl) so that

Hence,

n~l

L (-1)1+1 Q(tj) = Q(tl) - [Q(t2) - Q(g3)] - .. ,
j=l

< Q(1) - (Q(g2) - Q(g3)] - ...

< Q(1).

n-l n-l

I (_l)i+l Q(tj) - tQ(l) = L (-1)i-'-1 Q(gj)
j=l j~l

- Q(l) + tQ(1)

< tQ(1) < 0

when Q(1) < O. This implies that L' lies on the same side of H as F(D).
If L meets N l at 0 = F(1, t2 ,..., gn) then Q achieves a local minimum at

;2 and alternate maxima and minima at ;3'''', gn and the inner product of
the normal to N l at 0 with 0 - R is,

(2.7)

64ojIzjr-7
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which is nonnegative. Indeed, (-1)n+l Q(gn) is nonnegative since Q(O) = O.
Thus, L;~2 (_1)Hl Q(gj) is nonnegative. If Q(l) ~ 0 then (2.7) is surely
nonnegative. On the other hand, -Q(t2) > -Q(l) so that (2.7) exceeds
(1 - r)[ -(1/2)] Q(l), which is nonnegative if Q(l) < O. This concludes the
proof of the proposition.

Proof of Theorem 3. Let s* be a piecewise perfect spline solution of the
minimization problem (1.3) which is guaranteed by Theorem 2. In particular,
nns* = ±ex on a core subinterval of [Xl' X m ] where ex > 0 is the extremal
constant of the minimization problem. Let Vl(E) = {S~)(Xlm-l. If VJCE),
1 ::;;j <jo ::;; 111 have been defined, then by Proposition 1 there exists an
n-tup1e Vj (E), with components uniformly within E of the corresponding

o
components of {s~)(Xjo)}~-\ such that the equalities

{t(v)(Xjo_l)}~-l = Vjo-l(E), {t(v)(Xjo)}~-l = Vj.(E)

fail to hold for every perfect spline t with at most n - 1 knots in [Xj -1 , Xj ).
o 0

Let C(E) consist of allfE Wn,oo(xl , x m) which satisfy the conditions

and let

i = 1,... ,111, (2.8 i)

We claim that

lim inf ex(E) ::;; ex.
.--,0

(2.8 ii)

(2.9)

Indeed, let Ho consist of all functions g E Wn,oc(x l ,xm) with g(v)(xl ) = 0,
o ::;; v ::;; n - 1 and consider the mapping L from Ho into IR\ k = n(111 - 1),
given by

L is clearly surjective. The norm in H o can be taken to be

and hence there is a constant c such that each vector in Rk of norm 1 (for
convenience, choose the uniform norm) is the image under L of a function in
H o of norm not exceeding c. It follows that there is anI. E C(E) with

from which (2.9) follows.
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We now claim that for each tY(E) there is a perfect spline SeE) satisfying

89

i = 1,... , I?!,

(2.10 i)

(2.lOii)

and the property that SeE) has at most 11 knots on each interval (Xi' Xi+l),
1 ~ i ~ n - 1. Indeed, by Theorem 2, any solution of the extremal problem
just considered is a uniquely determined perfect spline on a core subinterval
J of [Xl' X m ]. The problem of determining SeE), then, is precisely the probiem
of extending SeE) from J to [Xl' X",]. For simplicity, we suppose that:
J = [Xl' xd, 2 ~ k ~ 111 ~ 1. The modifications required for the other
possibilities will be apparent. Upon identifying -1,0, 1, respectively,
with XI;_l , XI: , XI:+1 via an affine transformation we see that the hypotheses of
Proposition 2 are satisfied. Thus we can obtain an extended perfect spli'1e SeE)
on [Xl' Xh'+tl satisfying

i == .. , k + 1

and

The process can clearly be continued to obtain SeE) satisfying (2.10 i) and
(2.10 ii). If the core subinterval is situated differently, and extension must
also be carried out from right to left, then it is a routine matter to establish an
analog of Proposition 2 treating this case.

Consider the family {S(n)(E) : 0 < E~ I}.
We extract a subsequence S(n)(Ev), such that Ev -* 0, O:(EJ ---+ iX* ~ ex and

such that the following properties hold.

(i) Each S(Ev) has exactly the same number of knots on [Xl' X m).

(ii) For each i, the sequence giv
) of ith knots of s(Er ) is convergent.

(iii) For each i, the sequence of numbers

A simple consequence of (i), (ii) and (iii) is that s(n)(EvJ converges in
V(xl , x",) to a limit function Sn which is a step function with values ±cx*

and discontinuities restricted to the points ~ i described in (ii),
It is now an easy matter to verify that the family {S(';-ll(E,.)} is a uniformly

bounded and equicontinuous family on [Xl' x m ]. Indeed,

s(n-l)(E)(X) = S~'-l)(Xl) +r s:nl(E)(U) du
-1
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so that
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II S<n-l)(€ )11 00 ~ I s(n-I)(x)1 + C(X - x),
v L ("l'''m) * I m I

v ~ 1,

and

1 sln-l)(€v)(x) - s(n-I)(€v)(Y)1 = If s(n)(€v)(u) du I
~Cly-xi

for each v ~ 1. Thus, the Arzela-Ascoli theorem yields a uniformly conver
gent subsequence ofsln-l)(€v), say, sln-l)(€v ). Elementary considerations show

k

that, actually, Sllll(€v ) is uniformly convergent on [Xl' Xm] to a continuous
k

function Sll , 0 ~ 1L ~ n - 1.
Standard arguments now show that So E Wn.oo(XI , xm) with

SIll) = S
Oil'

and So is a perfect spline with at most n knots on (Xj , Xi+l), 1 ~ j ~ m - 1,
satisfying s~n) = ±a*. However, the uniform convergence of s(Il)(€v),
o~ 1L ~ n - 1, and the property that €v -- 0 imply

o~ 1L ~ n - 1, 1 ~ i ~ m. (2.11)

It follows immediately that a* = a and the proof is completed since (2.11)
implies, in particular, that So interpolates the appropriate constrained values
at the nodes, inasmuch as s* does.
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